6 research outputs found

    Robust and Traffic Aware Medium Access Control Mechanisms for Energy-Efficient mm-Wave Wireless Network-on-Chip Architectures

    Get PDF
    To cater to the performance/watt needs, processors with multiple processing cores on the same chip have become the de-facto design choice. In such multicore systems, Network-on-Chip (NoC) serves as a communication infrastructure for data transfer among the cores on the chip. However, conventional metallic interconnect based NoCs are constrained by their long multi-hop latencies and high power consumption, limiting the performance gain in these systems. Among, different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnect operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC). To realize the mm-wave wireless interconnect in a WiNoC, a wireless interface (WI) equipped with on-chip antenna and transceiver circuit operating at 60GHz frequency range is integrated to the ports of some NoC switches. The WIs are also equipped with a medium access control (MAC) mechanism that ensures a collision free and energy-efficient communication among the WIs located at different parts on the chip. However, due to shrinking feature size and complex integration in CMOS technology, high-density chips like multicore systems are prone to manufacturing defects and dynamic faults during chip operation. Such failures can result in permanently broken wireless links or cause the MAC to malfunction in a WiNoC. Consequently, the energy-efficient communication through the wireless medium will be compromised. Furthermore, the energy efficiency in the wireless channel access is also dependent on the traffic pattern of the applications running on the multicore systems. Due to the bursty and self-similar nature of the NoC traffic patterns, the traffic demand of the WIs can vary both spatially and temporally. Ineffective management of such traffic variation of the WIs, limits the performance and energy benefits of the novel mm-wave interconnect technology. Hence, to utilize the full potential of the novel mm-wave interconnect technology in WiNoCs, design of a simple, fair, robust, and efficient MAC is of paramount importance. The main goal of this dissertation is to propose the design principles for robust and traffic-aware MAC mechanisms to provide high bandwidth, low latency, and energy-efficient data communication in mm-wave WiNoCs. The proposed solution has two parts. In the first part, we propose the cross-layer design methodology of robust WiNoC architecture that can minimize the effect of permanent failure of the wireless links and recover from transient failures caused by single event upsets (SEU). Then, in the second part, we present a traffic-aware MAC mechanism that can adjust the transmission slots of the WIs based on the traffic demand of the WIs. The proposed MAC is also robust against the failure of the wireless access mechanism. Finally, as future research directions, this idea of traffic awareness is extended throughout the whole NoC by enabling adaptiveness in both wired and wireless interconnection fabric

    Address Obfuscation to Protect against Hardware Trojans in Network-on-Chips

    No full text
    In modern computing, which relies on the interconnection of networks used in many/multi-core systems, any system can be critically subverted if the interconnection is compromised. This can be done in a multitude of ways, but the threat of a hardware Trojan (HT) being injected into a system is particularly prevalent due to the increase in third-party manufacturers for system-on-chip (SoC) designs. With a local injection of an HT in an SoC, an adversary can gain access to information about applications running on the system by revealing specific communications of the SoC, and the network-on-chip (NoC) as a whole. This heavily compromises the system and gives information to the attacker, which can lead to more tailored, compromising attacks. In this paper, we demonstrate an HT that exploits communication patterns inside an SoC to reveal applications that are running on an NoC with multi/many-core processors. This is performed by leaking packet counts, after which the attacker then uses machine learning techniques to identify applications running on processors, and the SoC as a whole. We also propose a LUT-based obfuscation technique to limit the information available to the hardware Trojan. Our results indicate that this obfuscation method can reduce the accuracy of this attack from 99% to <8% in multi/many-core systems

    The Advances, Challenges and Future Possibilities of Millimeter-Wave Chip-to-Chip Interconnections for Multi-Chip Systems

    No full text
    With aggressive scaling of device geometries, density of manufacturing faults is expected to increase. Therefore, yield of complex Multi-Processor Systems-on-Chips (MP-SoCs) will decrease due to higher probability of manufacturing defects especially, in dies with large area. Therefore, disintegration of large SoCs into smaller chips called chiplets will improve yield and cost of complex platform-based systems. This will also provide functional flexibility, modular scalability as well as the capability to integrate heterogeneous architectures and technologies in a single unit. However, with scaling of the number of chiplets in such a system, the shared resources in the system such as the interconnection fabric and memory modules will become performance bottlenecks. Additionally, the integration of heterogeneous chiplets operating at different frequencies and voltages can be challenging. State-of-the-art inter-chip communication requires power-hungry high-speed I/O circuits and data transfer over long wired traces on substrates. This increases energy consumption and latency while decreasing data bandwidth for chip-to-chip communication. In this paper, we explore the advances and the challenges of interconnecting a multi-chip system with millimeter-wave (mm-wave) wireless interconnects from a variety of perspectives spanning multiple aspects of the wireless interconnection design. Our discussion on the recent advances include aspects such as interconnection topology, physical layer, Medium Access Control (MAC) and routing protocols. We also present some potential paradigm-shifting applications as well as complementary technologies of wireless inter-chip communications
    corecore